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Clairaut slant submersion from
almost Hermitian manifolds

Sushil Kumar, Rajendra Prasad, Punit Kumar Singh

Abstract. Our main aim is to introduce Clairaut slant submersions
in complex geometry. We give the notion of Clairaut slant submersions
from almost Hermitian manifolds onto Riemannian manifold in this ar-
ticle. We obtain some basic results on discussed submersions. Further-
more, we provide some examples to explore the geometry of Clairaut
slant submersions.

1. Introduction

Let M be a Riemannian manifold endowed with a Riemannian metric
g. An almost Hermitian manifold is a subclass of almost complex mani-
fold. Since the Riemannian submersions have many applications in science
and technology, especially in the theory of relativity and cosmology, many
researchers are attracted to this area.

In 1966 the theory of Riemannian submersion was initiated by O’ Neill
[15] and it has been further studied by Gray [8], in 1967. Later, Watson [30]
defined almost Hermition submersions and showed that horizontal and verti-
cal distributions are invariant with respect to the almost complex structure.
The Riemannian submersions play a vital role not only in the differential
geometry but also in science and technology. It is noticed that the theory
of Riemannian submersions are capable of handling many issues of the sin-
gularity theory, Yang-Mills theory, quantum theory, Kaluza-Klein theory,
relativity, superstring theories, etc. (see, [2, 6, 9]). For more details, we cite
the books ([7,23]) and the references therein. The Riemannian submersions
motivate the researchers to define the anti-invariant submersion [24], semi-
invariant submersion [26], invariant submersions [23], slant submersions [25],
semi-slant submersions [16], conformal anti-invariant submersions ([11,17]),
conformal semi-slant submersions [20], quasi-bi-slant submersions [18], (for
further details, see [10,19,21,22]), etc.
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In 1972 Bishop [4] introduced and studied a new and interesting class
of Riemannian submersion as: if there is a function r : M → R+ such
that for every geodesic, making an angle θ with the horizontal subspaces,
rsinθ is constant, then submersion π : M → N is said to be a Clairaut
submersion. Afterwards, this notion has been widely studied in Lorentzian
spaces [1], timelike and spacelike spaces [14], static spacetimes ([28,29]). In
1991 Aso et al. [3] generalized Clairaut submersions and the new conditions
for anti-invariant Riemannian submersions to be Clairaut were described in
[14]. In 2017 Sahin introduced Clairaut Riemannian map [27] and studied
its geometric properties and S. Kumar et al. [13] studied pointwise slant sub-
mersions from Kenmotsu manifolds. Recently, Yadav and Meena [31] have
defined Clairaut anti-invariant Riemannian maps from Kahler manifolds and
Kumar et al. studied Clairaut semi-invariant Riemannian maps in [12].

The above studies inspire us to introduce the notion of Clairaut slant
submersions from Hermitian manifolds onto Riemannian manifolds. We ex-
hibit our work as follows: section 2, contains some basic concepts which are
needed further in the paper. In section 3, we define the Clairaut slant sub-
mersions from Kähler manifolds onto Riemannian manifolds and discuss the
differential geometric properties of such submersions. Curvature Relations
of Clairaut slant submersions are discussed in section 4 and the last section
contains some explicit examples of discussed submersions.

2. Preliminaries

Let J be a (1, 1) tensor field on an even-dimensional differentiable mani-
fold N1 and I is identity operator in such a manner that

(1) J2 = −I.

Then J is called an almost complex structure on N1. The manifold N1

with an almost complex structure J is called an almost complex manifold.
Nijenhuis tensor N of an almost complex structure is defined as:

(2) N(V1,W1) = [JV1, JW1]− [V1,W1]− J [JV1,W1]− J [V1, JW1],

for all V1,W1 ∈ Γ(TN1).
The almost complex manifold N1 is called a complex manifold, if N van-

ishes on an almost complex manifold N1.
Let g1 be a Riemannian metric on N1, then g1 is called a Hermitian metric

on N1 if

(3) g1(JZ1, JW1) = g1(Z1,W1), for all Z1,W1 ∈ Γ(TN1).

Now, manifold N1 with Hermitian metric g1 is called an almost Hermitian
manifold. The Riemannian connection ∇ of the N1 can be extended to the
whole tensor algebra on N1. Tensor fields (∇Y1J) is defined as

(4) (∇Y1J)Z1 = ∇Y1JZ1 − J∇Y1Z1,

for all Y1, Z1 ∈ Γ(TN1).
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An almost Hermitian manifold (N1, g1, J) is called a Kähler manifold [5]
if

(5) (∇Y1J)Z1 = 0,

for all Y1, Z1 ∈ Γ(TN1).
For a Kähler manifold (N1, g1, J) we have

(6) R(X1, X2, X3, X4) = R(JX1, JX2, JX3, JX4),

(7) R(X1, X2, X3, X4) = R(X1, X2, JX3, JX4),

(8) R(X1, X2, JX3, X4) = −R(X1, X2, X3, JX4),

(9) R(JX1, X2, JX3, X4) = R(X1, JX2, X3, JX4),

(10)
R(X1, X2, X3, X4) = R(JX1, JX2, X3, X4) +R(JX1, X2, JX3, X4)

+R(JX1, X2, X3, JX4)

for all X1, X2, X3, X4 ∈ Γ(TN1), where R(X1, X2)X3 = ∇X1∇X2X3 −
∇X2∇X1X3 − ∇[X1,X2]X3 denotes the Riemannian curvature tensor filed
of N1.

Define O’Neill’s tensors [15] T and A by

(11) AE1E2 = H∇HE1VE2 + V∇HE1HE2,

(12) TE1E2 = H∇VE1VE2 + V∇VE1HE2,

for any vector fields E1, E2 on N1, where ∇ is the Levi-Civita connection of
g1. It is easy to see that TE1 and AE1 are skew-symmetric operators on the
tangent bundle of N1 reversing the vertical and the horizontal distributions.

From equations (11) and (12), we have

(13) ∇Z1U1 = TZ1U1 + V∇Z1U1,

(14) ∇Z1W1 = TZ1W1 +H∇Z1W1,

(15) ∇W1Z1 = AW1Z1 + V∇W1Z1,

(16) ∇V1W1 = H∇V1W1 +AV1W1,

for all Z1, U1 ∈ Γ(ker𭟋∗) and V1,W1 ∈ Γ(ker𭟋∗)
⊥, where H∇Z1W1 =

AW1Z1, if W1 is basic. It is clear that T performs on the fibers as the
second fundamental form, while A performs on the horizontal distribution
and measures the obstruction to the integrability of this distribution.

A differentiable map 𭟋 between two Riemannian manifolds is totally ge-
odesic if

(∇𭟋∗)(Z1, Z2) = 0, for all Z1, Z2 ∈ Γ(TN1).

A totally geodesic map is the one which maps every geodesic in the to-
tal space into a geodesic in the base space in proportion to arc lengths.
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A Riemannian submersion is called a Riemannian submersion with totally
umbilical fibers if [26]

(17) TX1Y1 = g1(X1, Y1)H,

for all X1, Y1 ∈ Γ(ker𭟋∗), where H is the mean curvature vector field of
fibers.

Let 𭟋 : (N1, g1) → (N2, g2) is a smooth map. Then 𭟋∗ of 𭟋 can be
observed as a section of the bundle Hom(TN1,𭟋−1TN2) → N1, where
𭟋−1TN2 is the bundle which has fibers (𭟋−1TN2)x = T𭟋(x)N2 has a con-
nection ∇ induced from the Riemannian connection ∇N1 and the pullback
connection. Then the second fundamental form of 𭟋 is given by

(18) (∇𭟋∗)(Z1, V1) = ∇𭟋
Z1
𭟋∗(V1)−𭟋∗(∇N1

Z1
V1),

for vector field Z1, V1 ∈ Γ(TN1), where ∇𭟋 is the pullback connection. We
know that the second fundamental form is symmetric.

Now, we recall following definitions for further use:

Definition 1 ([23]). Let 𭟋 be a Riemannian submersion from an almost
Hermitian manifold (N1, g1, J) onto a Riemannian manifold (N2, g2). Then,
we say that 𭟋 is an invariant submersion if the vertical distribution is in-
variant with respect to the complex structure J , i.e.,

J(ker𭟋∗) = ker𭟋∗.

Definition 2 ([24]). Let N1 be an almost Hermitian manifold with Her-
mitian metric g1 and almost complex structure J and N2 be a Riemannian
manifold with Riemannian metric g2. Suppose that there exists a submer-
sion 𭟋 : (N1, g1, J) → (N2, g2) such that J(ker𭟋∗) ⊆ (ker𭟋∗)

⊥. Then we
say that 𭟋 is an anti-invariant submersion.

Definition 3 ([25]). Let 𭟋 be a Riemannian map from an almost Hermitian
manifold (N1, g1, J) to a Riemannian manifold (N2, g2). If for any non-zero
vector Z ∈ (ker𭟋∗), the angle Θ(Z) between JZ and the space (ker𭟋∗)
is a constant, i.e., it is independent of the choice of the point p ∈ N1 and
choice of the tangent vector Z in (ker𭟋∗), then we say that 𭟋 is a slant
submersion. In this case, the angle Θ is called the slant angle of the slant
submersion.

3. Clairaut slant submersions

Bishop [4] gave the notion of Clairaut Riemannian submersion. He defined
that a Riemannian submersion 𭟋 : (N1, g1) → (N2, g2) is called a Clairaut
Riemannian submersion if there exists a positive function r on N1, such that
for any geodesic α on N1, the function (r◦α) sin θ is constant, where for any
t, θ(t) is the angle between .

α(t) and the horizontal space at α(t).
The necessary and sufficient condition for a Riemannian submersion to

be a Clairaut Riemannian submersion was also given by Bishop as follows.
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Theorem 1 ([4]). Let 𭟋 : (N1, g1) → (N2, g2) be a submersion with con-
nected fibers. Then, 𭟋 is a Clairaut submersion with r = eh if each fiber
is totally umbilical and has the mean curvature vector field H = −∇h with
respect to g1.

Now, we present the notion of Clairaut slant submersion as follows.

Definition 4. Let (N1, g1, J) be a Kähler manifold and (N2, g2) be a Rie-
mannian manifold. Any slant submersion from (N1, g1, J) onto (N2, g2) is
called Clairaut slant submersion if it satisfies the condition of Clairaut sub-
mersion.

We denote the complementary distribution to ω(ker𭟋∗) in (ker𭟋∗)
⊥ by

µ. Then for X1 ∈ (ker𭟋∗), we get

(19) JX1 = ϕX1 + ωX1,

where ϕX1 and ωX1 are vertical and horizontal parts of JX1. Also for X2 ∈
Γ(ker𭟋∗)

⊥, we have

(20) JX2 = BX2 + CX2,

where BX2 and CX2 are vertical and horizontal components of JX2.
The proof of the following result is the same as given in [25], therefore,

we omit its proof.

Lemma 1. Let 𭟋 be a slant submersion from an almost Hermitian manifold
(N1, g1, J) onto a Riemannian manifold (N2, g2). Then, we have

(i) ϕ2
1W1 = −(cos2Θ1)W1,

(ii) g1(ϕW1, ϕW2) = cos2Θ1g1(W1,W2),
(iii) g1(ωW1, ωW2) = sin2Θ1g1(W1,W2),

for all W1,W2 ∈ Γ(ker𭟋∗).

Lemma 2. Let 𭟋 be a slant submersion from a Kähler manifold (N1, g1, J)
onto a Riemannian manifold (N2, g2). Then, we have

V∇Y1ϕY2 + TY1ωY2 = BTY1Y2 + ϕV∇Y1Y2,(21)
TY1ϕY2 +H∇Y1ωY2 = CTY1Y2 + ωV∇Y1Y2,(22)

V∇Y1BW1 + TY1CW1 = ϕTY1W1 +BH∇Y1W1,(23)
TY1BW1 +H∇Y1CW1 = ωTY1W1 + CH∇Y1W1,(24)
V∇W1ϕY1 +AW1ωY1 = BAW1Y1 + ϕV∇W1Y1,(25)
AW1ϕY1 +H∇W1ωY1 = ωVW1Y1 + CAW1Y1,(26)

V∇W1BW2 +AW1CW2 = BH∇W1W2 + ϕAW1W2,(27)
AW1BW2 +H∇W1CW2 = ωAW1W2 + CH∇W1W2,(28)

for any Y1, Y2 ∈ Γ(ker𭟋∗) and W1,W2 ∈ Γ(ker𭟋∗)
⊥.
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Proof. Using equations (13)-(16), (19) and (20), we get the lemma com-
pletely. □

Now, we define

(∇Y1ϕ)Y2 = V∇Y1ϕY2 − ϕV∇Y1Y2,(29)
(∇Y1ω)Y2 = H∇Y1ωY2 − ωV∇Y1Y2,(30)

(∇W1C)W2 = H∇W1CW2 − CH∇W1W2,(31)
(∇W1B)W2 = V∇W1BW2 −BH∇W1W2,(32)

for any Y1, Y1 ∈ Γ(ker𭟋∗) and W1,W2 ∈ Γ(ker𭟋∗)
⊥.

Lemma 3. Let 𭟋 be a slant submersion from a Kähler manifold (N1, g1, J)
onto a Riemannian manifold (N2, g2). Then, we have

(∇Y1ϕ)Y2 = BTY1Y2 − TY1ωY2,

(∇Y1ω)Y2 = CTY1Y2 − TY1ϕY2,

(∇W1C)W2 = ωAW1W2 −AW1BW2,

(∇W1B)W2 = ϕAW1W2 −AW1CW2,

for any vectors Y1, Y2 ∈ Γ(ker𭟋∗) and W1,W2 ∈ Γ(ker𭟋∗)
⊥.

Proof. The proof of the above lemma is straightforward, so we omit its
proof. □

If the tensors ϕ and ω are parallel with respect to the linear connection
∇ on N1 respectively, then

BTY1Y2 = TY1ωY2, CTY1Y2 = TY1ϕY2

for any Y1, Y2 ∈ Γ(TN1).

Lemma 4. Let 𭟋 be a slant submersion from a Kähler manifold (N1, g1, J)
onto a Riemannian manifold (N2, g2). If α : I ⊂ R → M is a regular curve
and Y1(t) and Y2(t) are the vertical and horizontal components of the tangent
vector field

.
α = E of α(t), respectively, then α is a geodesic if and only if

along α the following equations hold:

cos2ΘV∇ .
αY1 = TY1ωϕY1 +AY2ωϕY1 + ϕTY1ωY1 +BH∇Y1ωY1

+BTY1BY2 + ϕV∇Y2ωY1 + ϕTY1CY2 + ωTY1CY2

+BH∇Y1CY2 + ϕAY2ωY1 +BAY2BY2 + ϕV∇Y2BY2

+BH∇Y2CY2 + ϕAY2CY2,

cos2Θ(TY1 +AY2)Y1 = H∇Y1ωϕY1 +H∇Y2ωϕY1 + ωTY1ωY1 + CH∇Y1ωY1

+ CTY1BY2 + ωV∇Y2ωY1 + ωTY1CY2 + CH∇Y1CY2

+ CH∇Y2ωY1 + ωAY2ωY1 + CAY2BY2 + ωV∇Y2BY2

+ CH∇Y2CY2 + ωAY2CY2.
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Proof. Let α : I → N1 be a regular curve on N1. Since Y1(t) and Y2(t)
are the vertical and horizontal parts of the tangent vector field .

α(t), i.e.,
.
α(t) = Y1(t) + Y2(t). Using equations (4), (5), (13)-(16), (19), (20) and
Lemma 1, we get

∇ .
α

.
α = −J(∇ .

αJ
.
α)

= −J(∇Y1ϕY1 +∇Y1ωY1 +∇Y2ϕY1 +∇Y2ωY1

+∇Y1BY2 +∇Y1CY2 +∇Y2BY2 +∇Y2CY2),

= −∇Y1ϕ
2Y1 −∇Y1ωϕY1 −∇Y2ϕ

2Y1 −∇Y2ωϕY1

− J(TY1ωY1 +H∇Y1ωY1 + TY1BY2 + V∇Y2ωY1 + TY1CY2

+H∇Y1CY2 +H∇Y2ωY1 +AY2ωY1 +AY2BY2 + V∇Y2BY2

+H∇Y2CY2 +AY2CY2)

= cos2ΘV∇ .
αY1 + cos2Θ(TY1 +AY2)Y1 − TY1ωϕY1 −H∇Y1ωϕY1

−H∇Y2ωϕY1 −AY2ωϕY1 − ϕTY1ωY1 − ωTY1ωY1 −BH∇Y1ωY1

− CH∇Y1ωY1 −BTY1BY2 − CTY1BY2 − ϕV∇Y2ωY1 − ωV∇Y2ωY1

− ϕTY1CY2 − ωTY1CY2 −BH∇Y1CY2 − CH∇Y1CY2 −H∇Y2ωY1

− CH∇Y2ωY1 − ϕAY2ωY1 − ωAY2ωY1 −BAY2BY2 − CAY2BY2

− ϕV∇Y2BY2 − ωV∇Y2BY2 −BH∇Y2CY2 − CH∇Y2CY2

− ϕAY2CY2 − ωAY2CY2.

Taking the vertical and horizontal components in above equation, we get

V∇ .
α

.
α = cos2ΘV∇ .

αY1 − TY1ωϕY1 −AY2ωϕY1 − ϕTY1ωY1

−BH∇Y1ωY1 −BTY1BY2 − ϕV∇Y2ωY1 − ϕTY1CY2

− ωTY1CY2 −BH∇Y1CY2 − ϕAY2ωY1 −BAY2BY2

− ϕV∇Y2BY2 −BH∇Y2CY2 − ϕAY2CY2,

H∇ .
α

.
α = cos2Θ(TY1 +AY2)Y1 −H∇Y1ωϕY1 −H∇Y2ωϕY1 − ωTY1ωY1

− CH∇Y1ωY1 − CTY1BY2 − ωV∇Y2ωY1 − ωTY1CY2

− CH∇Y1CY2 − CH∇Y2ωY1 − ωAY2ωY1 − CAY2BY2

− ωV∇Y2BY2 − CH∇Y2CY2 − ωAY2CY2.

Now, α is a geodesic on N1 if and only if V∇ .
α

.
α = 0 and H∇ .

α
.
α = 0,

which is completes proof. □

Theorem 2. Let 𭟋 be a slant submersion from a Kähler manifold (N1, g1, J)
onto a Riemannian manifold (N2, g2). Then 𭟋 is a Clairaut slant submersion
with r = eh if and only if

g1(V∇ .
αϕY1 + (TY1 +AY2)CY2 + (TY1 +AY2)ωY1, BY2) + g1(H∇ .

αωY1

+(TY1 +AY2)BY2 + (AY2 + TY1)ϕY1, CY2) + g1(Y1, Y1)
dh

dt
= 0,
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where α : I → N1 is a geodesic on N1 and Y1, Y2 are vertical and horizontal
components of

.
α(t).

Proof. Let α : I → N1 be a geodesic on N1 with Y1(t) = V .
α(t) and Y2(t) =

H .
α(t) denote the angle in [0,𭟋] between .

α(t) and Y2(t). Assuming ν =
|| .α(t)||,2 then we get

g1(Y1(t), Y1(t)) = ν sin2 θ(t),(33)

g1(Y2(t), Y2(t)) = ν cos2 θ(t).(34)

Now, differentiating (33), we get

d

dt
g1(Y1(t), Y1(t)) = 2ν cos θ(t) sin θ(t)

dθ

dt
,

ν cos θ(t) sin θ(t)
dθ

dt
= g1(V∇ .

αY1, Y1),

ν cos2Θcos θ(t) sin θ(t)
dθ

dt
= g1(cos

2ΘV∇ .
αY1, Y1).(35)

On the other hand, using Lemma 4 and equation (35), we get

ν cos2Θcos θ(t) sin θ(t)
dθ

dt
(36)

= g1(TY1ωϕY1 +AY2ωϕY1 + ϕTY1ωY1 +BH∇Y1ωY1

+BTY1BY2 + ϕV∇Y2ωY1 + ϕTY1CY2 + ωTY1CY2

+BH∇Y1CY2 + ϕAY2ωY1 +BAY2BY2 + ϕV∇Y2BY2

+BH∇Y2CY2 + ϕAY2CY2, Y1).(37)

Moreover, 𭟋 is a Clairaut slant submersion with r = eh if and only if
d
dt(e

h◦α sin θ) = 0, i.e., eh◦α(cos θ dθ
dt + sin θ dh

dt ) = 0. By multiplying this with
non-zero factor ν cos2Θsin θ, we have

(38) ν cos2Θcos θ sin θ
dθ

dt
= −ν cos2Θsin2 θ

dh

dt
.

Thus, from equations (17), (36) and (38), we have

− cos2Θ||Y1||2g1(∇h, Y2)(39)
= g1(TY1ωϕY1 +AY2ωϕY1 + ϕTY1ωY1 +BH∇Y1ωY1

+BTY1BY2 + ϕV∇Y2ωY1 + ϕTY1CY2 + ωTY1CY2

+BH∇Y1CY2 + ϕAY2ωY1 +BAY2BY2 + ϕV∇Y2BY2

+BH∇Y2CY2 + ϕAY2CY2, Y1),

which is completes the proof. □
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4. Curvature relations

In this section, we are going to obtain curvature relations of Clairaut slant
Riemannian submersions [7].

Let (N1, g1) and (N2, g2) be two Riemannia manifolds with corresponding
curvature relation R and R∗, respectively. Let π : (N1, g1) → (N2, g2) be
a Riemannian submersion and R̂ the curvature tensor of fibers of 𭟋. If
X1, X2, X3, X4 are horizontal and Z1, Z2, Z3, Z4 vertical vectors, then

R(Z1, Z2, Z3, Z4) = R̂(Z1, Z2, Z3, Z4)− g1(TZ1Z4, TZ2Z3)(40)
+ g1(TZ2Z4, TZ1Z3),

R(Z1, Z2, Z3, X1) = g1((∇Z1T )(Z2, Z3), X1)(41)
− g1((∇Z2T )(Z1, Z3), X1),

R(X1, X2, X3, Z1) = −g1((∇X3A)(X1, X2), Z1)− g1(AX1X2, TZ1X3)(42)
+ g1(AX2X3, TZ1X1) + g1(AX3X1, TZ1X2),

R(X1, X2, X3, X4) = R∗(X1, X2, X3, X4) + 2g1(AX1X2,AX2X3)(43)
− g1(AX2X3,AX1X4) + g1(AX1X3,AX2X4),

R(X1, X2, Z1, Z2) = −g1((∇Z1A)(X1, X2), Z2)(44)
+ g1((∇Z2A)(X1, X2), Z1)− g1(AX1Z1,AX2Z2)

+ g1(AX1Z2,AX2Z1) + g1(TZ1X1, TZ2X2)

− g1(TZ2X1, TZ1X2),

R(X1, Z1, X2, Z2) = −g1((∇X1T )(Z1, Z2), X2)(45)
− g1((∇Z1T )(X1, X2), Z2) + g1(TZ1X1, TZ2X2)

− g1(AX1Z1,AX2Z2).

Lemma 5. Let 𭟋 be a slant submersion from a Kähler manifold (N1, g1, J)
onto a Riemannian manifold (N2, g2). Then

R(V1, V2, V3, V4)

= cos4Θ(R̂(V1, V2, V3, V4)− g1(TV1V4, TV2V3) + g1(TV2V4, TV1V3))

− g1((∇ωϕV2T )(V1, V3), ωϕV4)− g1((∇V1A)(ωϕV2, ωϕV4), V3)

+ g1(TV1ωϕV2, TV3ωϕV4)− g1(AωϕV2V1,AωϕV4V3)

− cos2Θg1((∇V1T )(V2, V3), ωϕV4) + cos2Θg1((∇V2T )(V1, V3), ωϕV4)

+ cos2Θg1((∇V3T )(V4, V1), ωϕV2)− cos2Θg1((∇V4T )(V3, V1), ωϕV2)

+ cos2Θg1((∇V2T )(V1, ϕV3), ωV4)− cos2Θg1((∇V 1T )(V2, ϕV3), ωV4)

+ cos2Θ(−g1((∇V1A)(ωV3, ωV4), V2)
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+ g1((∇V2A)(ωV3, ωV4), V1)− g1(AωV3V1, TV2ωV4)

+ g1(AωV3V2, TωV4V1) + g1(TV1ωV3, TV2ωV4)

− g1(TV2ωV3, TV1ωV4)) + g1((∇ωV4T )(ϕV3, V1), ωϕV2)

+ g1((∇ϕV3A)(ωV4, ωϕV2), V1)− g1(TϕV3ωV4, TV1ωϕV2)

+ g1(AωV4ϕV3,AωϕV2V1)− g((∇ωϕV2A)(ωV3, ωV4), V1)

− g1(AωV3ωV4, AV1ωϕV2) + g1(AωV4ωϕV2,AV1ωV3)

+ g1(AωϕV2ωV3, TV1ωV4) + cos2Θ(g1((∇V3T )(V4, ϕV1), ωV2)

− g1((∇V4T )(V3, ϕV1), ωV2)) + cos2Θ(−g((∇V3A)(ωV1, ωV2), V4)

+ g1((∇V4A)(ωV1, ωV2), V3)− g1(AωV1V3,AωV2V4)

+ g1(AωV1V4,AωV2V3) + g1(TV3ωV1, TV4ωV2)

− g1(TV4ωV1, TV3ωV2)) + g1((∇ωV2T )(ϕV1, V3), ωϕV4)

+ g1((∇ϕV1A)(ωV2, ωϕV2), V3)− g1(TϕV1ωV2, TV3ωϕV2)

+ g1(AωV2ϕV1,AωϕV4Z)− g1((∇ωϕV4A)(ωV1, ωV2), V3)

− g1(AωV1ωV2, TV3ωϕV4) + g1(AωV2ωϕV4, TV3ωV1)

+ g1(AωϕV4ωV1, TV3ωV2)− g1((∇ωV2T )(ϕV1, ϕV3), ωV4)

− g1((∇ϕV1A)(ωV2, ωV4), ϕV3) + g1(TϕV1ωV2, TϕV3ωV4)

− g1(AωV2ϕV1,AωV4ϕV3) + g((∇ωV2A)(ωV3, ωV4), ϕV1)

+ g1(AωV3ωV4, TϕV3ωV2)− g1(AωV4ωV2, TϕV1ωV3)

− g1(AωV2ωV3, TϕV1ωV4) + g((∇ωV4A)(ωV1, ωV2), ϕV3)

+ g1(AωV1ωV2, TϕV3ωV4)− g1(AωV2ωV4, TϕV3ωV1)

− g1(AωV2ωV2, TϕV3ωV2) +R∗(ωV1, ωV2, ωV3, ωV4)

+ 2g1(AωV1ωV2,AωV3ωV4)− g(AωV2ωV3,AωV1ωV4)

+ g(AωV1ωV3, AωV2ωV4),

R(Z1, Z2, Z3, Z4)

= R̂(BZ1, BZ2, BZ3, BZ4)− g1(TBZ1BZ4, TBZ2BZ3)

+ g1(TBZ2BZ4, TBZ1BZ3) + g1((∇BZ1T )(BZ2, BZ3), CZ4)

− g1((∇BZ2T )(BZ1, BZ3), CZ4)− g1((∇BZ1T )(BZ2, BZ4), CZ3)

+ g1((∇BZ2T )(BZ1, BZ4), CZ3)− g1((∇BZ1A)(CZ3, CZ4), BZ2)

+ g1((∇BZ2A)(CZ3, CZ4), BZ1) + g1(ACZ3BZ1,ACZ4BZ2)

− g1(ACZ3BZ2,ACZ4BZ1) + g1(TBZ1CZ3, TBZ2CZ4)

− g1(TBZ2CZ3, TBZ1CZ4) + g1((∇BZ3T )(BZ4, BZ1), CZ2)

− g1((∇BZ4T )(BZ3, BZ1), CZ2)− g1((∇CZ2T )(BZ1, BZ3), CZ4)

− g1((∇BZ1A)(CZ2, CZ4), BZ3) + g1(TBZ1CZ2, TBZ3CZ4)
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− g1(ACZ2BZ1,ACZ4BZ3) + g1((∇CZ2T )(BZ1, BZ4), CZ3)

+ g1((∇BZ1A)(CZ2, CZ3), BZ4)− g1(TBZ1CZ2, TBZ4CZ3)

− g1(ACZ2BZ1,ACZ3BZ4) + g1((∇CZ2A)(CZ3, CZ4), BZ1)

+ g1(ACZ1CZ4, TBZ1CZ2)− g1(ACZ4CZ2, TBZ1CZ3)

− g1(ACZ2CZ3, TBZ1CZ4)− g1((∇BZ3T )(BZ4, BZ2), CZ1)

+ g1((∇BZ4T )(BZ3, BZ2), CZ1) + g1((∇CZ1T )(BZ2, BZ3), CZ4)

+ g1((∇BZ2A)(CZ1, CZ4), BZ3)− g1(TBZ2CZ1, TBZ3CZ4)

+ g1(ACZ1BZ2,ACZ4BZ3) + g1((∇CZ1T )(BZ2, BZ3), CZ4)

+ g1((∇BZ2A)(CZ1, CZ4), BZ3)− g1(TBZ2CZ1, TBZ3CZ4)

+ g1(ACZ1BZ2,ACZ4BZ3)− g1((∇CZ1A)(CZ3, CZ4), BZ2)

− g1(ACZ3CZ4, TBZ2CZ1) + g1(ACZ4CZ1, TBZ2CZ3)

+ g1(ACZ1CZ3, TBZ2CZ4)− g1((∇BZ3A)(CZ1, CZ2), BZ4)

+ g1((∇BZ4A)(CZ1, CZ2), BZ3)− g1(ACZ1BZ3,ACZ2BZ4)

+ g1(ACZ1BZ4,ACZ2BZ3) + g1(TBZ3CZ1, TBZ4CZ2)

− g1(TBZ4CZ1, TBZ3CZ2) + g1((∇CZ4A)(CZ1, CZ2), BZ3)

+ g1(ACZ1CZ2, TBZ3CZ4)− g1(ACZ2CZ4, TBZ3CZ1)

+ g1(ACZ4CZ1, TBZ3CZ2)− g1((∇CZ3A)(CZ1, CZ2), BZ4)

− g1(ACZ1CZ2, TBZ4CZ3) + g1(ACZ2CZ3, TBZ4CZ1)

+ g1(ACZ3CZ2, TBZ4CZ2) +R∗(CZ1, CZ2, CZ3, CZ4)

+ 2g1(ACZ1CZ2,ACZ3CZ4)− g1(ACZ2CZ3,ACZ1CZ4)

+ g1(ACZ1CZ3,ACZ2CZ4),

R(Z1, V1, Z2, V2)

= cos4Θ(−g1((∇Z1T )(V1, V2), Z2)− g1((∇V1A)(Z1, Z2), V2)

+ g1(TV1Z1, TV2Z2)− g1(AZ1V1,AZ2V2))

− cos2Θ(−g1((∇Z1A)(Z2, ωϕV2), V1)− g1(AZ2ωϕV2, TV1Z1)

+ g1(AωϕV2Z1, TV1Z2) + g1(AZ1Z2, TV1ωϕV2))

+R∗(Z1, ωϕV1, Z2, ωϕV2) + 2g1(AZ1ωϕV1,A2ωϕV2)

− g1(AωϕV1Z2,AZ1ωϕV2) + g(AZ1Z2,AωϕV1ωϕV2)

− cos2(−g1(∇Z2A)(Z1, ωϕV1), V2)− g1(AZ1ωϕV1, TV2Z2)

+ g1(AωϕV1Z2, TV2Z1) + g1(AZ2Z1, TV2ωϕV1))

− cos2Θ(−g1((∇ωV2T )(BZ2, V1), Z1)− g1((∇BZ2A)(ωV2, Z1), V1)

+ g1(TBZ2ωV2, TV1Z1)− g1(AωV2BZ2,AZ1V1))

+ cos2Θ(−g1((∇Z1A)(CZ2, ωV2), V1)− g1(TCZ2ωV2, TV1Z1)
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+ g1(AωV2Z1, TV1CZ2) + g1(AZ1CZ2, TV1ωV2)

− g1((∇ωV2A)(Z1, ωϕV1), BZ2)− g1(AZ1ωϕV1, TBZ2ωV2)

+ g1(AωϕV1ωV2, TBZ2Z1) + g1(AωV2Z1, TBZ2ωϕV1)

−R∗(CZ2, ωV2, Z1, ωϕV1)− 2g1(ACZ2ωV2,AZ1ωϕV1)

− g1(AωV2Z1,ACZ2ωϕV1) + g1(ACZ2Z1,AωV2ωϕV1)

− cos2Θ(−g1((∇ωV1T )(BZ1, V2), Z2)− g1((∇V2A)(ωV1, Z2), BZ1)

+ g1(TV2Z2, TBZ1ωV1)− g1(AωV1Z2,ABZ1V2))

+ cos2Θ(−g1((∇Z2A)(CZ1, ωV1), V2)− g1(ACZ1ωV1, TV2Z2)

+ g1(AωV1Z2, TV2CZ1) + g1(AZ2CZ1, TV2ωV1))

− g1((∇ωV1A)(Z2, ωϕV2), BZ1)− g1(AZ2ωϕV2, TBZ1ωV1)

+ g1(AωϕV2ωV1, TBZ1Z2) + g1(AωV1Z2, TBZ1ωϕV2)

−R∗(CZ1, ωV1, Z2, ωϕV2) + 2g1(ACZ1ωV1,AZ2ωϕV2)

− g1(AωV1Z2,ACZ2ωϕV2) + g1(ACZ1Z2,AωV1ωϕV2)

− g1((∇ωV1T )(BZ1, BZ2), ωV1)− g1((∇BZ1A)(ωV1, ωV2), BZ2)

+ g1(TBZ1ωV1, TBZ2ωV2)− g1(AωV1BZ1,AωV2BZ2)

+ g1((∇ωV1T )(CZ1, ωV2), BZ1) + g1(ACZ2ωV2, TBZ1ωV1)

− g1(AωV2ωV1, TBZ1CZ2)− g1(AωV1CZ2, TBZ1ωV2)

+ g1((∇ωV2T )(CZ2, ωV1), BZ2) + g1(ACZ1ωV1, TBZ2ωV2)

− g1(AωV1ωV2, TBZ2CZ1)− g1(AωV2CZ1, TBZ2ωV1)

+R∗(CZ1, ωV1, CZ2, ωV1) + 2g1(ACZ1ωV1, TCZ2ωV2)

− g1(AωV1CZ2,ACZ1ωV2) + g1(ACZ1CZ2,AωV1ωV2).

for Z1, Z2 ∈ Γ(ker𭟋∗)
⊥ and V1, V2 ∈ Γ(ker𭟋∗).

Proof. Using equations (6)-(10), (40)-(45) and Lemma 1, we can easily get
Lemma 5. □

5. Example

Example 1. Let N1 be an Euclidean space given by

N1 =
{
(x1, x2, x3,x4) ∈ R4 : (x1, x2, x3,x4) ̸= (0, 0, 0, 0)

}
.

We define the Riemannian metric g1 on N1 given by

g1 = e2x4dx21 + e2x4dx22 + e2x4dx23 + dx24

and the complex structure on J and N1 defined as

J(x1, x2, x3, x4) = (−x2, x1,−x4, x3).

Let N2 = {(v1, v2, v3) ∈ R3} be a Riemannian manifold with Riemannian
metric g2 on N2 given by g2 = e2x4dv21 + dv22.
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Define a map 𭟋 : R4 → R2 by 𭟋(x1, x2, x3, x4) = (x1−x3√
2

, x4). Then we
have

(ker𭟋∗) = ⟨X1 = (e1 + e3), X2 = e2⟩,
and

(ker𭟋∗)
⊥ = ⟨V1 = (e1 − e3), V2 = e4⟩,

where{
e1 = e−x4

∂

∂x1
, e2 = e−x4

∂

∂x2
, e3 = e−x4

∂

∂x3
, e4 =

∂

∂x4

}
,{

e∗1 =
∂

∂v1
, e∗2 =

∂

∂v2

}
are bases on TqN1 and T𭟋(q)N2 respectively, for all p ∈ N1. By direct com-
putations, we can see that

𭟋∗(V1) =
√
2e−x4e∗1,𭟋∗(V2) = e∗2

and
g1(Vi, Vj) = g2(𭟋∗Vi,𭟋∗Vj),

for all Vi, Vj ∈ Γ(ker𭟋∗)
⊥, i = 1, 2. Therefore 𭟋 is a slant submersioon with

slant angle Θ = π
4 .

Now, we will find smooth function h on N1 satisfying TXX = g1(X,X)∇f ,
for all X ∈ Γ(ker𭟋∗). Since covariant derivative for vector fields E = Ei

∂
∂xi

,
F = Fj

∂
∂xj

on N1 is defined as

(46) ∇EF = EiFj∇ ∂
∂xi

∂

∂xj
+ Ei

∂Fj

∂xi

∂

∂xj
,

where the covariant derivative of basis vector fields ∂
∂xj

and ∂
∂xi

is defined
by

(47) ∇ ∂
∂xi

∂

∂xj
= Γk

ij

∂

∂xk
,

and Christoffel symbols are defined by

(48) Γk
ij =

1

2
gkl

(
∂g1jl
∂xi

+
∂g1il
∂xj

− ∂g1ij
∂xk

)
.

Now, we get

(49) g1ij =


e2x4 0 0 0
0 e2x4 0 0
0 0 e2x4 0
0 0 0 1

 , gij1 =


e−2x4 0 0 0
0 e−2x4 0 0
0 0 e−2x4 0
0 0 0 1


By using (48) and (49), we get

Γ1
11 = 0, Γ2

11 = 0, Γ3
11 = 0, Γ4

11 = −e−2x4 ,(50)

Γ1
22 = 0, Γ2

22 = 0, Γ3
22 = 0, Γ4

22 = −e−2x4 ,
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Γ1
33 = 0, Γ2

33 = 0, Γ3
33 = 0, Γ4

33 = −e−2x4 ,

Γ1
12 = Γ2

12 = Γ3
12 = Γ4

12 = 0,

Γ1
21 = Γ2

21 = Γ3
21 = Γ4

21 = 0,

Γ1
13 = Γ2

13 = Γ3
13 = Γ4

13 = 0,

Γ1
31 = Γ2

31 = Γ3
31 = Γ4

31 = 0,

Γ1
23 = Γ2

23 = Γ3
23 = Γ4

23 = 0,

Γ1
32 = Γ2

32 = Γ3
32 = Γ4

32 = 0.

Using equations (47) and (50), we obtain

∇e1e1 = ∇e2e2 = ∇e3e3 = − ∂

∂x4
,(51)

∇e1e2 = ∇e1e3 = ∇e2e1 = ∇e2e3 = 0,

∇e3e1 = ∇e3e2 = 0,

Therefore

(52) ∇X1X1 = ∇e1+e3e1 + e3 = −2
∂

∂x4
,∇X2X2 = ∇e2e2 = − ∂

∂x4
.

Now, we have

TXX = Tλ1X1+λ2X2λ1X1 + λ2X2, λ1, λ2 ∈ R,

(53) TXX = λ2
1TX1X1 + λ2

2TX2X2 + 2λ1λ2TX1X2.

Using (52), we obtain

(54) TX1X1 = −2
∂

∂x4
, TX2X2 = − ∂

∂x4
, TX1X2 = 0.

Next, using (53) and (54), we get

(55) TXX = −(2λ2
1 + λ2

2)
∂

∂x4
.

Since X = λ1X1 + λ2X2, so

g1(λ1X1 + λ2X2, λ1X1 + λ2X2) = 2λ2
1 + λ2

2.

For any smooth function h on R4, the gradient of h with respect to the
metric g1 is given by

∇h =
4∑

i,j=1

gij1
∂f

∂xi

∂

∂xj
.

Hence

∇h = e−2x4
∂h

∂x1

∂

∂x1
+ e−2x4

∂h

∂x2

∂

∂x2
+ e−2x4

∂h

∂x3

∂

∂x3
+

∂h

∂x4

∂

∂x4
.
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Hence ∇h = ∂
∂x4

for the function h = x4. Then it is easy to see that
TXX = −g1(X,X)∇h, thus by Theorem 1, is a Clairaut slant Riemannian
submersion.

Example 2. Let N1 be an Euclidean space given by

N1 =
{
(x1, x2, x3,x4) ∈ R4 : (x1, x2, x3,x4) ̸= (0, 0, 0, 0)

}
.

We define the Riemannian metric g1 on N1 given by

g1 = e2x4dx21 + e2x4dx22 + e2x4dx23 + dx24

and the complex structure on J and N1 defined as

J(x1, x2, x3, x4) = (−x2, x1,−x4, x3).

Let N2 = {(v1, v2, v3) ∈ R3} be a Riemannian manifold with Riemannian
metric g2 on N2 given by g2 = e2x4du21 + du22.

Define a map 𭟋 : R4 → R2 by 𭟋(x1, x2, x3, x4) = (x2−
√
3x3

2 , x4). Then we
have

(ker𭟋∗) = ⟨V1 = e1, V2 =
√
3e2 + e3⟩,

and
(ker𭟋∗)

⊥ = ⟨H1 = e2 −
√
3e3, H2 = e4⟩,

where{
e1 = e−x4

∂

∂x1
, e2 = e−x4

∂

∂x2
, e3 = e−x4

∂

∂x3
, e4 =

∂

∂x4

}
,{

e∗1 =
∂

∂u1
, e∗2 =

∂

∂u2

}
are bases on TqN1 and T𭟋(q)N2 respectively, for all p ∈ N1. By direct com-
putations, we can see that

𭟋∗(H1) = 2e−x4
∂

∂u1
,𭟋∗(H2) =

∂

∂u1

and
g1(Hi, Hj) = g2(𭟋∗Hi,𭟋∗Hj),

for all Hi, Hj ∈ Γ(ker𭟋∗)
⊥, i = 1, 2. Therefore 𭟋 is a slant submersion with

slant angle Θ = π
6 .

Now, we will find smooth function R4 on satisfying TV V = g1(V, V )∇h
for all V ∈ Γ(ker𭟋∗).

Using the given complex structure, we find

(56)

[e1, e1] = [e2, e2] = [e3, e3] = [e4, e4] = 0,

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = e1,

[e2, e3] = 0, [e2, e4] = e2, [e3, e4] = e3.
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The Levi-Civita connection ∇ of the metric g1 is given by the Koszul’s
formula, which is

(57)
2g1(∇XZ, V ) = Xg1(Z, V ) + Zg1(V,X)− V g1(X,Z)

− g1([X,Z], V )− g1([Z, V ], X) + g1([V,X], Z).

Using (56) and (57), we have

(58)
∇e1e1 = −e4,∇e1e2 = 0, ∇e1e3 = 0, ∇e2e1 = 0, ∇e2e2 = −e4,

∇e2e3 = 0, ∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = −e4.

Therefore

(59)
∇V1V1 = ∇e1e1 = −e4, ∇V1V2 = ∇e1

√
3e2 + e3 = 0

∇V2V1 = ∇√
3e2+e3

e1 = 0, ∇√
3e2+e3

√
3e2 + e3 = −4e4.

Now, we have

TV V = ∇λ1V1+λ2V2λ1V1 + λ2V2, λ1λ2 ∈ R.

(60) TV V = λ2
1TV1V1 + λ2

2TV2V2 + λ1λ2TV1V2 + λ1λ2TV2V1.

Using (59), we obtain

(61) TV1V1 = −e4, TV1V2 = 0, TV2V1 = 0, TV2V2 = −4e4.

Using (60) and (61), we get

(62) TV V = −(λ2
1 + 4λ2

2)
∂

∂x4
.

Since V = λ1V1 + λ2V2, so

g1(λ1V1 + λ2V2, λ1V1 + λ2V2) = λ2
1 + 4λ2

2.

For any smooth function h on R4 the gradient of h with respect to the metric
g1 is given by

∇h = e−2x4
∂h

∂x1

∂

∂x1
+ e−2x4

∂h

∂x2

∂

∂x2
+ e−2x4

∂h

∂x3

∂

∂x3
+

∂h

∂x4

∂

∂x4
.

Hence ∇h = ∂
∂x4

for the function h = x4. Then it is easy to see that
TV V = g1(V, V )∇h, thus by Theorem 1, it is a Clairaut slant Riemannian
submersion.

6. Conclusion

We introduce Clairaut slant submersions from Almost Hermitian man-
ifolds onto Riemannian manifolds in the present paper. We discuss the
geomtrical properties of Clairaut slant submersions from Kähler manifolds
onto Riemannian manifolds. With the help of Theorem 1, we prove that 𭟋
is a Clairaut slant Riemannian submersion in Euclidean space with almost
complex structure. Finally, the submersion with almost contact structure in
Euclidean space is investigated.
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